Optimal reduced-rank estimation and filtering

نویسندگان

  • Yingbo Hua
  • Maziar Nikpour
  • Petre Stoica
چکیده

This paper provides a unified view of, and a further insight into, a class of optimal reduced-rank estimators and filters. An alternating power (AP) method for computing the optimal reduced-rank estimators and filters is derived and analyzed. The AP method is a generalization of the conventional power method for subspace computation, which is shown to be globally and exponentially convergent under weak conditions. When the rank reduction is relatively large, the AP method is computationally more efficient than the conventional methods. The AP method is useful for adaptive computation of the canonical components of a desired reduced-rank estimate, which in turn facilitates the detection of a time-varying rank. The study shown in this paper is particularly useful for applications that involve a large number of sources and a large number of receivers, where rank reduction is either inherent in the multivariate system or required to reduce the model complexity and/or the computational load.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-channel noise reduction via semi-orthogonal transformations and reduced-rank filtering

This paper investigates the problem of single-channel noise reduction in the time domain. The objective is to find a lower dimensional filter that can yield a noise reduction performance as close as possible to or even better than that obtained by the full-rank solution. This is achieved in three steps. First, we transform the observation signal vector sequence, through a semi-orthogonal matrix...

متن کامل

Optimal stack filtering and the estimation and structural approaches to image processing

Rank-order based filters such as stack filters, multistage median filters, morphological filters, and order statistic filters, have all proven to be very effective at enhancing and restoring images. Perhaps the primary reason for their success is that they can suppress noise without destroying important image details such as edges and lines. Two approaches have been used in the past to design r...

متن کامل

Convergence rate of Bayesian tensor estimator and its minimax optimality

We investigate the statistical convergence rate of a Bayesian low-rank tensor estimator, and derive the minimax optimal rate for learning a lowrank tensor. Our problem setting is the regression problem where the regression coefficient forms a tensor structure. This problem setting occurs in many practical applications, such as collaborative filtering, multi-task learning, and spatiotemporal dat...

متن کامل

Harnessing Structures in Big Data via Guaranteed Low-Rank Matrix Estimation

Low-rank modeling plays a pivotal role in signal processing and machine learning, with applications ranging from collaborative filtering, video surveillance, medical imaging, to dimensionality reduction and adaptive filtering. Many modern high-dimensional data and interactions thereof can be modeled as lying approximately in a low-dimensional subspace or manifold, possibly with additional struc...

متن کامل

An Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising

MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2001